Principles of Hydrogen Storage Dr. Mohamed Aboud Sustainable Energies Technologies center (SET) □ Introduction ☐ Available Technologies ## Hydrogen as a fuel - It represents a environmentally clean energy source. The mass-related energy density of hydrogen is very high; 1 kg of hydrogen contains 120-133 MJ, which is approximately 2.5 times more energy than is contained in 1 kg of natural gas. - Hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). - Most abundant element in the universe representing 75 mass% or 90 vol% - •In the total water supply of the world is on the order of 10¹⁴ t - •In the atmosphere, only to the extent of less than 1 ppm (by volume). | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |-----------------------|--------------------|-------------------------|---|-------------------------------|----------------------|------------------|---------------------|-------------------------|--|---------------------|-----------------------|------------------------|--------------------|-----------------------|--|--------------------------|--| | hydrogen | | | | | | | | | | | | | | | | | hellum | | 1 | | | | | | | | | | | | | | | | | 2 | | Н | | | | | | | | | | | | | | | | | He | | 1.00794(7) | | | Key: | | | 3 | | | | | | | | | | | 4.002602(2) | | Ithium
3 | beryllium
4 | | | element name
omic numb | er | | | | | | | 5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | Li | Be | | S | ymbo | ol | | | | | | | В | C | N | 0 | F | Ne | | 6.941(2) | 9.012182(3) | | 2003 atomic | weight (mean re | elative mass) | | | | | | | 10.811(7) | 12.0107(8) | 14.0067(7) | 15.9994(3) | 18.9984032(5) | 20.1797(6) | | sodium | magnesium | 100 | 7. | | | 8 | | | | | | aluminium | silicon | phosphorus | sulfur | chlorine | argon | | 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | Al | Si | P | S | CI | Ar | | 22.989770(2) | 24.3050(6) | | | | | | | | | | | 26.981538(2) | 28.0855(3) | 30.973761(2) | 32.065(5) | 35.453(2) | 39.948(1) | | potassium
19 | 20 | scandium
21 | ttanium
22 | vanadium
23 | chromium
24 | manganese
25 | 26 | 27 | nickel
28 | copper
29 | 30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | 35 | krypton
36 | | 1/ | | | | 1/ | | | | | | _ | | | | | | | | | N. | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.0983(1) | 40.078(4) | 44.955910(8) | 47.867(1) | 50.9415(1) | 51.9961(6) | 54.938049(9) | 55.845(2) | 58.933200(9) | 58.6934(4) | 63.546(3) | 65.38(2) | 69.723(1) | 72.64(1) | 74.92160(2) | 78.96(3) | 79.904(1) | 83.798(2) | | rubidium
37 | strontium
38 | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | 50 | antimony
51 | tellurium
52 | 53 | 54 | | Rb | Sr | V | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Λα | Cd | In | Sn | Sb | Te | T I | Xe | | | | | and the second second | and the state of the state of | | A Company | | and the second second | and the same of th | Ag | | In | | The second | The state of s | | The state of s | | 85.4678(3)
caesium | 87.62(1)
barlum | 88.90585(2)
lutetlum | 91.224(2)
hafnlum | 92.90638(2)
tantalum | 95.96(2)
tungsten | [98]
rhenium | 101.07(2)
osmlum | 102 90550(2)
Iridium | 106.42(1)
platinum | 107.8682(2)
gold | 112.411(8)
mercury | 114.818(3)
thaillum | 118.710(7)
lead | 121,760(1)
bismuth | 127.60(3)
polonium | 126.90447(3)
astatine | 131.293(6)
radon | | 55 | 56 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.90545(2) | 137.327(7) | 174.9668(1) | 178.49(2) | 180.9479(1) | 183.84(1) | 186.207(1) | 190.23(3) | 192.217(3) | 195.078(2) | 196.96655(2) | 200.59(2) | 204.3833(2) | 207.2(1) | 208.98038(2) | [209] | [210] | [222] | | francium
87 | radium
88 | 103 | rutherfordlum
104 | dubnium
105 | seaborgium
106 | bohrlum
107 | hassium
108 | meitnerium
109 | darmstadtium
110 | roentgenium
111 | ununblum
112 | ununtrium
113 | ununquadium
114 | ununpentum
115 | ununhexium
116 | ununseptium
117 | ununoctium
118 | | 100 | 100 | 100000 | 400000000000000000000000000000000000000 | | 100000 | 1000 | | and the second | 1700 | | | | | | | 5.55 | The second second | | Fr | Ra | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo | | [223] | [226] | [262] | [267] | [268] | [271] | [272] | [270] | [276] | [281] | [280] | [285] | [284] | [289] | [288] | [293] | 1 - | [294] | | La | nt | ha | no | id | 5 | |----|----|----|----|----|---| Actinoids | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |----------------|---------------|--------------------|---------------|-----------------|-----------------|-----------------|--------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------| | 138.9055(2) | 140.116(1) | 140.90765(2) | 144.24(3) | [145] | 150.36(3) | 151.964(1) | 157.25(3) | 158.92534(2) | 162.500(1) | 164.93032(2) | 167.259(3) | 168.93421(2) | 173.054(5) | | actinium
89 | thorium
90 | protectinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curium
96 | berkellum
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | Ac | Th | Pa | U | Np | Pu | Am | | Bk | Cf | Es | Fm | Md | No | | מדרון | 737 0304/45 | ירוסספרת ויכר | 720 07004/31 | (727) | 134.0 | F343t | D471 | 17470 | men | ורשרז | 17571 | men | mean | ## Physical properties - At STP conditions, it is a colorless, odorless, tasteless, non-toxic, noncorrosive, non-metallic diatomic gas - Most important characteristics is its low density - Leakage rates are by a factor of 50 higher than for water and by a factor of 10 compared to Nitrogen. - It is positively buoyant above a temperature of 22 K | Parameter | Hydrogen | |---|----------------| | Molecular weight [g/mol] | 2.01594 | | Stoichiometric fraction in air [vol%] | 29.53 | | Boiling point (BP) [K] | 20.268 | | Melting point (MP) [K] | 14.01 | | Triple point: Temperature [K] | 13.8 | | Pressure [kPa] | 7.2 | | Critical point: Temperature [K] | 33.25 | | Pressure [MPa] | 1.297 | | Density [kg/m³] | 31.4 | | Electronegativity [Pauling scale] | 2.20 | | Density of gas @ NTP (2) [kg/m ³] | 0.08345 | | gas @ STP (1) [kg/m ³] | 0.08990 | | gas @ BP [kg/m ³] | 1.338 | | liquid @ BP [kg/m ³] | 70.78 | | solid @ 4 K [kg/m³] | 88.0 | | Expansion ratio liquid/ambient | 845 | | Diffusion coefficient @ NTP (2) [m ² /s] | $0.61*10^{-4}$ | | Diffusion velocity @ NTP (2) [m/s] | < 0.02 | | Buoyant velocity [m/s] | 1.2 - 9 | | Specific heat (constant p) of gas @ NTP (2) [kJ/(kg K)] | 14.85 | | gas @ STP (1) [kJ/(kg K)] | 14.304 | | gas @ BP [kJ/(kg K)] | 12.15 | | liquid @ BP [kJ/(kg K)] | 9.66 | ## Available Technologies CGH₂ (compressed gaseous hydrogen), 35– 70 MPa, room temperature • LH₂ (liquid hydrogen), 0.1–1 MPa,- 253 °C • Cryoadsorption on high-surface-area materials, 0.2–0.5 MPa, -193 °C ## Compressed Gaseous Hydrogen - To achieve vehicles with a range of about 500 km, it is necessary to store about 5–6 kg of hydrogen on board the car. - Mechanical work to compress hydrogen is approximately 18 MJ per kg of hydrogen at 70 MPa, or 14.5 MJ per kg at 35 MPa. - 0.048 kg H₂ per kg tank weight and 0.023 kg H₂ per liter tank volume. Together with the requirement of a cylindrical design (caused by the large operating pressures of about 35–70 MPa), the integration of such a tank into existing car architectures remains an important challenge - Three-vessel carbon composite unit to store 4.2 kg of hydrogen at 70 MPa weighs 135 kg (the weight of a similar steel system would be 600 kg) - Refill an empty CGH2 system completely within three minutes. ## Liquid Hydrogen - Potential advantage of LH₂ systems is the high mass density of hydrogen at -253 C and 0.1 MPa. - The energy required to liquefy hydrogen already consumes 30% of the chemical energy stored - Very low phase-change enthalpy of about 0.45 MJ per kg of H₂ between the liquid and gaseous state - Heat flowing from the environment into the tank vessel leads to an evaporation of the hydrogen (boil- off) and increasing pressure within the tank - On-board- and infrastructure-related, lead to unacceptable hydrogen losses. ## (Cryo-)Adsorption Adsorption is an exothermic reaction Desorption is an endothermic reaction Desorption is an endothermic re 2-5 kJ per mol of H₂ on high surface materials Hydrogen gas phase Conventional metal hydride 20-30 kJ per mol of H₂ Adsorption on internal surfaces, e.g. pores, powder surface ∞ ∞ ∞ Amount of specific surface are is decisive Weak bonds hydrogen ← host cryogenic operation temperature H₂ splits into protons, diffuses into metal and is absorbed Strong bonds hydrogen ---- metal - elevated operating temperature #### **General Considerations** Bing Saub Million 1977 - Typical adsorption enthalpies for hydrogen on adsorbents such as carbon or metal—organic frameworks are in the order of 2–5 kJ per mol of hydrogen. - For Nitrogen, the heat of vaporization is 5.6 kJ per mol of N₂. - Considering a heat of adsorption of 2 MJ per kg of H₂, we would need 2200 moles of N₂ corresponding to 80 kg liquid nitrogen would be needed. - About 200 kg of liquid nitrogen would be necessary if the heat of adsorption would be close to the higher values of 5 MJ per kg of H₂ # IUPAC (international union for pure and applied chemistry) classification on pores King Sand Church 1997 - Macroporous (>50nm) - Mesoporus (2-50nm) - Microporus (<2nm) - Generally, the hydrogen uptake is limited by both the specific surface area, with a proportionality constant of 1.9x10⁻² wt % g m⁻², and by the pore structure and sizes of the adsorbents. - Ideal materials have a high surface area and pores in the micropore range; ideally below 1 nm. ## Adsorption Isotherms - An Adsorption Isotherm is obtained by measuring the amount of gas adsorbed across a wide range of relative pressures at a constant temperature (typically liquid N₂, 77K). Conversely desorption Isotherms are achieved by measuring gas removed as pressure is reduced - 5 Classical Iostherm types described by Brunauer, Deming, Deming and Teller. ### Different types of Adsorption Isotherms - Type I isotherms are given by microporous solids having relatively small external surfaces (e.g. activated carbons, molecular sieve zeolites and certain porous oxides), the limiting uptake being governed by the accessible micropore volume rather than by the internal surface area. - The Type II isotherm represents unrestricted monolayer-multilayer adsorption. Point B, the beginning of the almost linear middle section of the isotherm, is often taken to indicate the stage at which monolayer coverage is complete and multilayer adsorption about to begin. - Type III isotherm is convex over its entire range and therefore does not exhibit a Point B. In such cases, the adsorbent- adsorbate interactions play an important role. - Type IV, its hysteresis loop is associated with capillary condensation taking place in mesopores - The Type V isotherm is uncommon; it is related to the Type III isotherm in that the adsorbent- adsorbate interaction is weak - The Type VI isotherm, in which the sharpness of the steps depends on the system and the temperature, represents stepwise multilayer adsorption on a uniform non-porous surface. ## Promoting by Spillover - cryoadsorption is still in the development phase, and significantly improved hydrogen adsorber materials are needed. - it shows a way of tackling the drawbacks of LH₂ systems as the respective phase-change energy is an order of magnitude greater than that of liquid hydrogen. - It can revolutionize hydrogen storage if adsorber materials are discovered in the near future with 10 wt% or more excess capacity at -196 C and approximately 2–3 MPa. ## Many Thanks ➤ Questions?