

Materials and Structural Design for Advanced Energy Storage Devices

Imran Shakir

Sustainable Energy Technologies Center (SET) King Saud University Saudi Arabia

Introduction and Motivation

Portable electronics

Electrical vehicle 20-30% CO₂ emission

5XFY016 Rechargelt.org Capacitor Supercapacitor hickness ckness >1000nn $E = \frac{1}{2} CV^2$ **Electrolyte solution** $C \alpha$ 1/thickness **Important Parameters:** Energy and Power density 1. Cycle life and safety 2.

3. Cost

Supercapacitors

Electric Double Layer Capacitor

King Saud Burners

- EDL formed with electrode and electrolyte with solvent molecules between as dielectric.
- Store energy by adsorbing electrolyte ions onto the surface of the electrode
- Fast acting. Low energy potential, charge confined to surface

Pseudocapacitor

King Saud Burnston

- Rely on redox reactions that take place at the electrode
- Electrode materials typically made up of transition metals, conducting polymers, or
- compound with O and N functional groups
- Higher Energy density but lower cycling life

Pseudocapacitance with specifically adsorbed ions

Hybrid capacitor

 A combination of EDLC and pseudocapacitors. Optimizes power density of EDLC with energy density of pseudocapacitor

 One common example is the Li ion capacitor which is a current leader in the field

Materials Challenges

Reactions occur at the electrode surfaces

- We want to get as high a surface area as possible Need to have ions and electrons together for reactions to occur However
 - e.g. Nanomaterials behave differently than bulk materials Energy of the reactions also depend on the surface properties
- Electrons must still be able to get outside the cell
 - 1. Electron resistance cannot be too high
 - 2. Separator must be robust and allow rapid transfer of ions
- 3. Fundamental materials properties need to be understood Basic materials properties
 - 1. Transport in porous materials
 - 2. Interfacial properties

Materials for Supercapacitors

Double Layer Capacitors

aub

5

CNTS

- C carboxylic
- E Easter
- P Purified

Graphene Nanosheet for EDLC

ing Saud Bi

Solution Processable Holey Graphene Oxide

mg Saud

Nano letters 15 (7), 4605-4610

Graphene Sandwich between MWCNTs layers for Energy Storage Devices

Graphene Sandwich between MWCNTs layers for Energy Storage Devices

Saud O

Imran Shakir, Electrochimica Acta 129, 396-400

Pseudocapacitors

Store energy using fast surface redox reactions

Metal oxides: Capacity 1300 F/g (RuO₂) Nominal voltage 1.2 V Conducting polymers: Capacity 30 – 40 mAh/g Nominal voltage 1.0 V

polypyrro

polyaniline

MoO₃ Nanorods for Energy Storage Applications

 Maximum current was obtained from the samples synthesized at 180 °C which was due to the increase of crystallinity and morphology.

Imran Shakir et al. Electrochimica Acta 56 (2010) 376-380

MoO₃ Nanorods for Energy Storage Applications

- The increase in ionic resistivity at higher scan rate leads to a drop in the capacitance of the nanorods.
- The specific capacitance of as synthesized nanorods at 180 °C was found to be higher than that of nanorods synthesized at 120 °C, and comparable to that of the 150 °C (at a scan rate of 5 mV/s).

Imran Shakir et al. Electrochimica Acta 56 (2010) 376-380

Hydrogenated TiO₂ as Supercapacitors

ing Saud T

Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes

Imran Shakir et al. Electrochimica Acta 118 (2014) 138–142

Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes

Imran Shakir et al. Electrochimica Acta 118 (2014) 138–142

Ultrathin Metal Oxide Sandwich between Graphene layers for Energy Storage Devices

Ni/Cu/Ni/Au Coated Textile Fiber Substrate

Imran Shakir, et.al Nanoscale 6 (8), 4125-4130

Imran Shakir, Electrochimica Acta 129, 396-400

Deposition of metal oxide coated MWCNTs layer

Transfer of Graphene on the Layer of metal oxide coated MWCNTs

Ultrathin Metal Oxide Sandwich between Graphene layers for Energy Storage Devices

 The specific capacitance of metal oxide with thickness of 3 nm sandwich between graphene was found to be higher than that of higher thickness (2590F/g).

Imran Shakir, *et.al* Nanoscale 6 (8), 4125-34130

Ni(OH)₂-coated ZnO Nanowire-based Energy Storage Devices

Step 1: Preparation of Ni/Cu/Ni/Gold textile fiber

Step 2: Hydrothermal growth of ZnO nanowires

Step 3: Synthesis of Ni(OH)₂-coated ZnO nanowires

The Ni(OH)₂ coated ZnO nanowires electrodes show a nonlinear charge-discharge curve, which indicates electrode have pseudocapacitive behavior with a specific capacitance of 3200 F/g.

Materials for lithium Ion Battery

Design Considerations

- Volumetric and/or gravimetric energy density
- 2. Cycle life
- 3. Safe operation
- 4. Energy losses in course of charge/discharge cycle
- 5. Power performance, needed for some applications
- 6. Environmentally friendly and inexpensive.

Materials Requirements

- Large reversible capacity reversible capacity
- Small irreversible capacity
- Desirable charge profile charge profile
- Desirable kinetics (rate capability)
- Long y g cycle and calendar life
- Ease of processing
- Safety
- Compatibility with electrolyte and binder systems
- Low cost

Major Types of Materials

Layered oxides with the α-NaFeO₂-type structure

• Oxides with a spinel structure

 Poly-anion oxides with the olivine and olivine-related structures

Anode Materials

- 1. Current Materials
 - 1. Carbonaceous
 - 1. Graphite
 - 2. Hard Carbon
 - 3. Soft Carbon
 - 2. Titanium Oxide
- 2. Future Materials
 - 1. Silicon
 - 2. Nanomaterials
 - 3. Other

Structure and Designing Options

Some limitations such as:

- 1. Low electronic conductivity
- 2. Low ionic conductivity
- 3. Charge recombination
- 4. Wide band gap

These limitations can be overcome by:

- 1. Tuning shape and size
- 2. Composite structures
- 3. Doping

Impedance Analysis Zn Doped Mesoporous TiO₂ Microspheres

 $\begin{array}{c} Real~Z/\Omega\\ \text{Nyquist plots for Zn doped mesoporous TiO}_2 \text{ microspheres and 20 nm}\\ anatase~\text{TiO}_2 \text{ nanopowder} \end{array}$

(a) Charge-discharge profiles for Zn doped mesoporous TiO_2 at C/5 charge-discharge rates. (b) Discharge capacity of Zn doped mesoporous TiO_2 and 20 nm anatase TiO_2 nanoparticles at different discharge rates

(a) Percentage increase in discharge capacity of Zn doped mesoporous TiO_2 and 20 nm anatase TiO_2 nanoparticles at different discharge rates. (b) Cycling performance and Columbic efficiency of Zn doped mesoporous TiO_2 up to 100 cycles at 1C charge/discharge rates.

Thank you for your attention!