

Towards the development of low cost non-platinum based catalysts for catalytic water splitting

Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Dr. Usman Ali Rana

What is getting critical

Global air pollution levels are increasing to alarming levels

Carbon footprint

A **carbon footprint** is intrinsically defined as "the total types of greenhouse gas **emissions** caused by an organization, event, product or person."

According to International Standards Organization (ISO), **"ISO 14064-1:2006** specifies principles and requirements at the organization level for quantification and reporting of greenhouse gas (GHG) emissions and removals. It includes requirements for the design, development, management, reporting and verification of an organization's GHG inventory".

Global CO₂ Emission

Antarctic ICE Cores:

210 – 300 ppm for past 650,000 years

In 2004, CO_2 concentration in the atmosphere was 380 ppm

The 2050 estimate of global CO₂ concentration 550 – 750 ppm

Reference: Science, 2005, 310, pp 1313

Intergovernmental Panel on Climate Change (IPCC) suggest

- to stabilize the atmospheric concentration of CO₂ at 350-400 ppm
- limit the global mean temperature increase to 2.0-2.4 °C, global CO₂
- emissions in 2050 would have to be reduced by 50-80% of the emission levels in the year 2000

Look Dr

What is the largest source of CO₂ and other harmful gases emission

Air pollution: A serious threat to the Kingdom's environment

- Pollution from vehicle's exhaust is a major cause of environmental threat in the Kingdom.
- When fuel is burnt in the car engines, the main gases produced are carbon dioxide (CO₂), carbon monoxide (CO), hydrocarbons, nitrogen oxides and water.
- CO₂ is one of the major greenhouse gases.
- We are currently observing CO₂ concentration around 3000 to 5000 ppm around KSU, which is an alarming figure.
- The bigger the engine in vehicles, the more air pollution we cause.

A busy road in the Kingdom

Ref: http://www.all-recycling-facts.com/car-pollution.html

Lets

Energy Efficiency

Engine efficiency of thermal <u>engines</u> (such as internal combustion engines in cars) is the relationship between the total <u>energy</u> contained in the <u>fuel</u> (such as gasoline), and the amount of energy used to perform useful work.

- Modern <u>gasoline</u> engines have a maximum thermal efficiency of about 25% to 30% when used to power a car.
- Even when the engine operates at the point of maximum thermal efficiency, about 70-75% is rejected as heat without being turned into useful work.
- Since, more than 3 quarter of fuel burns without performing any useful work, it causes poor fuel economy and more environmental damage due to greenhouse gas emissions (CO₂ emission).

Car engines, Fuel economy and Pollution

- Gasoline engines are unfortunately not burning gasoline to its full potential.
- The 21% Oxygen (O_2) in air is not enough for proper combustion of gasoline in cars.
- Insufficient O₂ causes greater losses (fuel loss and environmental pollution).
- The rejected heat is carried away by the harmful gases from exhaust.
- Improving the fuel combustion in car engines can reduce the fuel consumption; the same time it helps reduce the car pollution.

Should we go for electric vehicles

Making Use of Solar Energy

Perfect for the Australian climate, the rear spoiler's solar panel converts sunlight into energy for the 12v battery, which helps to power many of the interior accessories.

Nissan LEAF®

Easy Charging

There are 3 ways to charge the Liion battery. 'Quick charge' can take the battery to 80% charge in about 30 minutes. 'Normal charge' takes around 7-8 hours from empty to full and 'Trickle charge' takes around 14 hours*

Quick charge: DC fast charge station Normal and Trickel charge: 240 V home charging dock

What will happen if

YOUR BATTERY FLAT OUT IN THE MIDDLE OF ROAD

Are you ready

To re plug in your car every 20 Kilometer to keep your car running

Think You know

We use fuel because they have lots of energy

What is the best alternative to gasoline?

Energy Densities Of Common Energy Storage Materials

Storage material	Energy type	MJ per kilogram	MJ per liter (litre)	Direct uses
Deuterium-tritium	Nuclear fusion	330 000 000	6 368 000 000	Proposed power plants (under development)
Uranium-235	Nuclear fission	79 500 000	1 534 000 000	Electric power plants (nuclear reactors)
Hydrogen (compressed at 70 MPa)	<u>Chemical</u>	123	5.6	Experimental automotive engines
<u>Gasoline</u> (petrol) / <u>Diesel</u>	Chemical	~46	~36	Automotive engines
<u>Propane</u> (including <u>LPG</u>)	Chemical	46.4	26	Cooking, home heating, automotive engines
Fat (animal/vegetable)	Chemical	37		Human/animal nutrition
<u>Coal</u>	Chemical	24		Electric power plants, home heating
Carbohydrates (including sugars)	Chemical	17		Human/animal nutrition
<u>Protein</u>	Chemical	16.8		Human/animal nutrition

Energy Densities Of Common Energy Storage Materials

Storage material	Energy type	MJ per kilogram	MJ per liter (litre)	Direct uses
Wood	Chemical	16.2		Heating, outdoor cooking
<u>TNT</u>	Chemical	4.6		Explosives
<u>Gunpowder</u>	Chemical	3		Explosives
Lithium battery	Electrochemical	1.8	4.32	Portable electronic devices, flashlights (non-rechargeable)
Lithium-ion battery	Electrochemical	0.72	0.9-2.23	Laptop computers, mobile devices, some modern electric vehicles
Alkaline battery	Electrochemical	0.67	1.8	Portable electronic devices, flashlights
<u>Nickel-metal hydride</u> <u>battery</u>	Electrochemical	0.288	0.504-1.08	Portable electronic devices, flashlights
Lead-acid battery	Electrochemical	0.17	0.34	Automotive engine ignition
Supercapacitor	Electrochemical	0.018		Electronic circuits

Ref: Web reference, Retrieved on 14-04-2013 from http://en.wikipedia.org/wiki/Energy_density

How to use Hydrogen as FUEL

Water electrolyzer HHO Cell

Major function is to produce Hydrogen and Oxygen gas mixture (Oxyhydrogen) on board while running the car

Polymer electrolyte Membrane Fuel Cell

Major Function is to use Hydrogen and produce electricity to run the car

Hydrogen Fuel Cell Hybrid vehicles

PEM Fuel Cell

The three sizes of 900L Ovonics® Metal Hydride Hydrogen storage tanks

Switching to Fuel Cell Hybrid vehicles

- The cost of Fuel Cell Hybrid vehicles is more than double the cost of normal car.
- Hydrogen production from sustainable sources (such as solar or wind assisted water splitting) is unable to feed the requirement of Hydrogen Fuel for the existing number of vehicles in the Kingdom.

The number of licensed cars in the Kingdom is expected to rise to 18 million by the end of the year. (Arab News 23rd October 2014)

Can we improve the combustion efficiency of fuel?

 Gasoline (petrol) has lot of energy (42 MJ/kg); we only need to improve its combustion efficiency in the engine.

Oxyhydrogen: HHO gas mixture

What is HHO gas:

- HHO, two parts hydrogen and one part oxygen is a mixture of gas generated during water electrolysis.
- HHO can be used as a supplement/additive to gasoline, which can improve the fuel's combustion by 20 to 50% of its normal combustion efficiency.
- HHO gas mixture helps the gasoline or diesel fuel to burn more efficiently and cleanly inside the cylinders.
- Using HHO gas mixture as a supplement to gasoline or diesel improves the fuel economy and reduces the harmful emission of gasses, which pollute the environment.
- Upon using HHO gas mixture, the energy released at the point of ignition is more than 4 times as powerful as that of petrol, and 100 times quicker in burning.

Oxyhydrogen: HHO gas mixture

How it works:

- When your engine is running, the water electrolyzer cell/water splitting cell produces hydrogen and oxygen (called HHO, or Brown's gas) "on demand".
- The HHO gas is injected into your vehicle's air intake system, making its way to the cylinders to mix with the air and gasoline vapor already present.
- When the spark plug fires, the HHO ignites along with the fuel, causing the fuel to burn faster and producing nothing but water vapor in the exhaust.
- By accelerating the fuel-air burn, the hydrogen causes your car to burn the gasoline more completely, increasing your overall fuel efficiency.
- By producing nothing but water vapor in the exhaust, there is no additional risk to the environment.
- The hydrogen's higher burn temperature and explosive force is such that it cleans the soot that collects in the engine (it is like having the engine consistent maintains) and with a cleaner engine you get better mileage and fewer oil changes .

Installation of HHO gas kit in cars

How Hydrogen Generator works

1.23 V vs RHE at pH 0

Electrochemical water splitting By using electricity

At Anode	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	
At Cathode	$4\mathrm{H}^{+} + 4e^{-} \rightarrow 2\mathrm{H}_{2}$	
Overall	$2H_2O \square O_2+2H_2$	

Platinum group metals and their alloys are so far the best catalysts for water splitting and Fuel cell power generation

The cost of Pt based catalysts are the major barrier towards the commercialization of Fuel Cell technology

Catalyst Engineering

Can we replace expensive Platinum with some cheap catalyst materials in HHO cells and Reverse Fuel Cell systems?

Water electrolyzer HHO Cell

Use stainless steel plates as electrodes

Polymer electrolyte Membrane Fuel Cell

Use platinum deposited onto carbon cloth as electrode

Our Novel N/P doped Carbon materials

Figure: (a) LSVs of NP-C-NA1-900 sample recorded by using the same three electrode configuration. (b) long term water electrolysis (water oxidation) using Chronoamperometery (CA) technique, where the working electrode was held at fixed potential of 1.77 V vs RHE (at an overpotential of 0.54 V) to achieve the current density \geq 10 mA cm⁻².

Long term water splitting

Constant potential water oxidation testing 1.77 V vs RHE (at an overpotential of 0.54 V)

Which one is best water splitting material

Constant potential water oxidation testing 1.56 V vs RHE (at an overpotential of 0.335 V)

Future plans: KSU HHO cell

ENERGY DENSITY

Energy density is the amount of useful or extractable energy stored in a given system per unit volume

Pathways to produce

Renewable Hydrogen

Major Hydrogen Production Technology pathways

Technology Pathway Development Timelines, Feedstocks, and Energy Sources for Hydrogen Production

Renewable Fuel

Hydrogen from water splitting

Water Splitting by sun light

Features

• Hydrogen is a green fuel

 H_2O

- Hydrogen can be produced by water splitting
- The current human demand of electricity is 14 TW per anum
- We need 16 TW by year 2050
- With an Olympic size pool of water, we can produce 43 TW electricity

The Physics behind

WATER SPLITTING

$$H_2O \rightarrow \frac{1}{2}O_2 + H_2 \qquad \Delta G = 237.2 \text{ kJ mol}^{-1}$$

According to Nernst calculations

$$\Delta G = 237.2 \text{ kJ mol}^{-1} \longrightarrow \Delta E = 1.23 \text{ V}$$

Theoretical voltage (E) = 1.23 V

Voltage (V)

Challenges

Reduce the over potential.

Nernst Equation

 $E^{0}(O_{2} / H_{2}O) = 1.23 \text{ V- } 0.059 \text{ V x pH vs (NHE)}$

Featuring Reverse Fuel Cell Technology

Water Electrolysis Mode

Power Generation Mode

<u>At Anode</u> <u>At Cathode</u> $2H_2 \rightarrow 4H^+ + 4e^- \qquad O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

Commercial devices for Hydrogen Production

Hydrogen Generator 300 – 500 mL/min H₂ generation

Applications in Stationary power plants and Hydrogen Fuel Stations

Polymer Electrolyte membrane Fuel Cell (PEMFC)

Applications in vehicle technology such as Fuel Cell Hybrid Vehicles (FCHV)

Solar driven water electrolysis Renewable Hydrogen

The three sizes of 900L Ovonics® Metal Hydride Hydrogen storage tanks The hydrogen generators of the HG series (HG 30 | 60)

Hydrogen Powered Fuel cell

UTC powered 400 kW stationary fuel cell unit for domestic and industrial electricity supply

Toyota Fuel Cell Hybrid Vehicle

GREEN Fuel

Fuel Cell Powered Cars

- Water is the only exhaust in
 - Fuel Cell Powered cars
- High Efficiency
- Fuel cell can use H₂,
 - Methanol, Ethanol
- Zero noise pollution
- Overall zero Emission system