King Saud University Sustainable Energy Technologies Center (SET)

BIOMASS GROUP

Biomass to Energy Conversions -Thermochemical Processes-

by Dr. Salim Mokraoui

PhD Chemical Eng. MS. Mechanical Eng.

E-mail: <u>smokraoui@ksu.edu.sa</u> Tel: 014676832

Outline

Introduction

- 1. Energy Context
- 2. Biomass as Renewable Energy Resources
- 3. Bioenergy
- > Biomass characteristics
- 1. Biomass composition
- 2. Thermo-physical properties
- > Biomass Thermal Conversion
- 1. Principals
- 2. Gasification technology
- 3. Pyrolysis technology

1. Energy Context

- Biomass as Renewable Energy Resources
 Bioenergy
- Biomass characteristics
- **1.** Biomass composition
- 2. Thermo-physical properties
- Biomass Thermal Conversion
- 1. Principals
- **2.** Gasification technology
- **3.** Pyrolysis technology

Energy context

World population is rising (8.3 billion by 2030)

Global energy demand increase

GHG emissions to the atmosphere (especially CO₂ and methane)

- Renewable energy offer a good mechanism to reduce carbon emissions
- Energy efficient systems for more economy

Biomass as a renewable energy resource

- Biomass is biological organic matter derived from living or recently-living organisms
- Biomass is an extremely important energy source, available nearly everywhere
- Biomass encompasses a large variety of materials, including wood from various sources, agricultural and industrial residues, and animal and human waste
- Bioenergy is the energy contained (stored) in biomass
- Two forms of biomass

Raw: forestry products, grasses, crops, animal manure, and aquatic products (seaweed)

Secondary: materials that undergone significant changes from raw biomass. Paper, cardboard, cotton, natural rubber products, and used cooking oils.

Biomass as a renewable energy resource

- Bioenergy is the energy retrieved from biomass sources. It is the largest used renewable energy resource in the world
- Large bioenergy potential: Biomass resource is widely available and diversified in the Kingdom: Livestock waste, Municipal and Industrial effluents (paper, plastic, food, ...etc.), Poultry waste, Sewage sludge
- Bioenergy is a significant mean for waste disposal to prevent environmental pollution and allow economic stability
- Main Technologies:
 - Biogas based power plant technology
 - Gasification power plant technology
 - Biodiesel and Bioethanol Plants technology

Biomass provides more than 10 % of Global energy use (International Energy Agency, 2013)

Renewable and Bio-Power Capacities in World

(International Energy Agency, 2012*)

Advantages:

- Biomass reduce the dependence on fossil fuels
- It provides an inexpensive and readily available source of energy, and chemicals
- It offers another major benefit to sustainability namely a pathway to <u>manage</u> <u>municipal and agricultural waste</u>
- Processing biomass materials for fuel reduce the environmental hazard
- Biomass provides an effective low Sulphur fuel.
- It has many derived products that may substitute those of plastics and other products
- It has many applications for <u>remote area</u>

Disadvantages:

- Biomass has low energy content compared to coal and petroleum derived fuels
- Intensive cultivation may stress water resource and deplete soil nutrients
- It has high cost of transportation and pre-treatment

> Introduction

- **1.** Energy Context
- 2. Biomass as Renewable Energy Resources
- 3. Bioenergy
- Biomass characteristics
- 1. Biomass composition
- 2. Thermo-physical properties
- Biomass Thermal Conversion
- **1.** Principals
- 2. Gasification technology
- **3.** Pyrolysis technology

Biomass Composition

Biomass is composed from <u>carbohydrate</u> polymers (cellulose and hemicellulose), aromatic polymers (<u>Lignin</u>), <u>proteins</u> and <u>fats</u> (lipids)

Cellulose $(C_6H_{10}O_5)$ is the most important structural component of the primary cell wall of green plants and

most abundant organic polymer on earth

Hemicellulose present with cellulose in almost all plant cell walls

Cellulose is crystalline, strong and resistant to decomposition in presence of heat, but hemicellulose has a little strength in front of heat

Unique characteristic of biomass as the only renewable and carbon based resource, makes it more attractive for energy purposes

Divided into wet and dry biomass

Biomass Composition

Biomass	Lignin (%)	Cellulose (%)	Hemicellulose (%)
Softwood	27 - 30	35 - 42	20 - 30
Hardwood	20 – 25	40 - 50	20 – 25
Wheat straw	15 – 20	30 - 43	20 – 27
Switchgrass	5 – 20	30 - 50	10 - 40
Animal manure	Animal manure 5 – 8		15 – 22
Newspaper	18 - 30	40 - 55	25 - 40
Sorted refuse (MSW)	20	60	20

Thermo-physical properties

Thermo-chemical properties

Proximate analysis

Procedure steps:

1. <u>Heat 1 hour</u> at 104 °C to 110 °C. Report waste losses

2. <u>Ignite in a covered crucible</u> for seven minutes at 950 °C and report the weight loss (combined water, hydrogen, and the portion of the carbon initially present as or converted to volatile hydrocarbons) as volatile matter.

3. <u>Ignite in an open crucible at 725 °C</u> to constant weight and report weight loss as fixed carbon.

4. Report the residual mass as ash.

Ultimate analysis

Ultimate analysis refers to routine that report **mass content of several elements**: Carbon, Hydrogen (other than in moisture or combined water), oxygen, total sulfur, nitrogen, chlorine and ash. The testing method uses an <u>elemental analyzer</u> which consist of a system of oxidation and reduction chambers related to a Specific detection system

Thermochemical analysis

In combustion systems, **heat of reaction** is an important factor. This property can be obtained experimentally using a **bombe calorimeter** where a small quantity (sample) is burned with sodium peroxide in a heavy-walled, sealed container immersed in water.

Thermo-chemical properties

Proximate, ultimate composition and heating values (HHV) of some biomass feedstocks

	Ultimate Analysis (wt% dry basis)					asis)	Proximate Analysis (wt% dry basis)			
										Heating
									Fixed	Value HHV
	С	Η	Ν	0	S	Ash	Moisture	Volatiles	Carbon	(MJ/kg)
Agricultural Residues										
Sawdust	50	6.3	0.8	43	0.03	0.03	7.8	74	25.5	19.3
Bagasse	48	6.0	-	42	-	4	1	80	15	17
Corn Cob	49	5.4	0.4	44.6	-	1	5.8	76.5	15	17
Short Rotation Woody C	rops									
Beech Wood	50.4	7.2	0.3	41	0	1.0	19	85	14	18.4
Herbaceous Energy Crop	s									
Switchgrass	43	5.6	0.5	46	0.1	4.5	8.4	73	13.5	15.4
Straw	43.5	4.2	0.6	40.3	0.2	10.1	7.6	68.8	13.5	17
Miscanthus	49	4.6	0.4	46	0.1	1.9	7.9	79	11.5	12
Municipal Solid Waste										
Dry Sewage	20.5	3.2	2.3	17.5	0.6	56	4.7	41.6	2.3	8
Coals										
Subbituminous	67.8	4.7	0.9	17.2	0.6	8.7	31.0	43.6	47.7	24.6
Bituminous	61.5	4.2	1.2	6.0	5.1	21.9	8.7	36.1	42.0	27.0

> Introduction

- 1. Energy Context
- 2. Biomass as Renewable Energy Resources
- 3. Bioenergy
- Biomass characteristics
- **1.** Biomass composition
- 2. Thermo-physical properties
- **Biomass Thermal Conversion**
- 1. Principals
- 2. Gasification technology
- **3.** Pyrolysis technology

General Bioenergy Production Routes

Thermochemical conversion options

Thermochemical conversion principals

Pyrolysis

- First step in combustion and
- gasification processes
- The feedstock is heated in a reactor
- in the absence of air or oxygen
- Moisture and other volatiles are released above 100 °C
- The pyrolysis process occurs mostly between 300 and 400 °C yielding: Pyrolysis gas (CO, CO2, H2, CH4, light HC)
- Synthetic oil (Tars) obtained after cooling of condensable vapors including water, methanol, heavy HC, etc.
- Char (carbonaceous solid and other inert materials.

COMBUSTION

Gasification

The conversion of solid fuel is carried out at higher temperatures – 750 to 1200 °C and in a <u>controlled atmosphere</u> with substoichiometric conditions of oxidant.
The process is <u>endothermic</u>
Gasification involves 4 steps:
Drying: moisture
Pyrolysis: volatiles, lights HC and tar
Solid-phase reaction: combustion of Solid carbon into CO, H₂ and CH₄
Gas phase reaction: reduction of CO

Combustion

- Rapid and complete oxidation of the solid fuel
- Main products: CO₂ and water
- High temperatures over 1200 °C

Gasification mechanism

Gasification mechanism

Solid-Gas reactions

Carbon – Oxygen reaction: $C + 0.5 \cdot O_2 \leftrightarrow CO$ $\Delta H_r = -110.5 \, k / mol$ $C + CO_2 \leftrightarrow 2CO$ $\Delta H_r = 172.4 \, kJ/mol$ Bouduard reaction: $\Delta H_r = 131.3 \, k J/mol$ Carbon – Water reaction: $C + H_2 O \leftrightarrow H_2 + CO$ $\Delta H_r = -74.8 \, k J/mol$ *Hydrogenation reaction:* $C + 2H_2 \leftrightarrow CH_4$ **Gas-phase reactions**

Carbon monoxide - Oxygen reaction: $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $\Delta H_r = -281 \ kJ/mol$ Water - Gas shift reaction: $CO + H_2O \leftrightarrow H_2 + CO_2$ $\Delta H_r = -41.1 \ kJ/mol$ Methanation reaction: $CO + 3H_2 \leftrightarrow CH_4 + H_2O$ $\Delta H_r = 172.4 \ kJ/mol$

Combustion mechanism

Comparison: combustion, gasification, pyrolysis

	Combustion	Gasification	Pyrolysis
Oxidizing Agent	Greater than stoichiometric supply of oxygen	Less than stoichiometric oxygen or steam as the oxidizing agent	Absence of oxygen or steam
Typical Temperature Range with Biomass Fuels	900 C to 1200 °C	800 to 1200 °C	350 to 600 °C
Products	Power, heat, soil amendments, and other co-products	Power, heat, combustible gas, chemical feedstocks, hydrogen, biochar, soil amendments	Power, heat, liquid fuel (bio-oil), combustible gas, chemical feedstocks, soil amendments, biochar
Principle Components of produced Gas	CO2 and H2O	CO and H2	CO and H2
Technology status	Mature	Deployment, emerging into commercialization	Demonstration

> Introduction 1. Energy Context 2. Biomass as Renewable Energy Resources 3. Bioenergy **Biomass characteristics** 1. Biomass composition 2. Thermo-physical properties Biomass Thermal Conversion **1.** Principals 2. Gasification technology 3. Pyrolysis technology

Basic process steps of a biomass gasification plant

Updraft Gasifier

- The gasification agent is added at the bottom, flowing in counter-current configuration with the feedstock, which is introduced in the top
- The fuel passes successively through drying and pyrolysis where it is decomposed into volatile gases and solid Char
 After pyrolysis has finished, the char is reduced by endothermic gasification reactions
- Combustion of char occurs near the grate and the hot combustion gases transfer heat to the rest of the process
 Char conversion is high, as the char reacts with oxygen as a last sub-process and char combustion reaction is faster than the char gasification reactions

Characteristics of Updraft Gasifiers

- <u>Char conversion is high</u>, as the char reacts with oxygen as a last sub-process and char combustion reaction is faster than the char gasification reactions
- The gasification <u>efficiency is high</u> due to high char conversion and due to that the gas exit temperature is relatively low (300-400°C).
- As pyrolysis takes place at rather low temperature, <u>tar and methane production are significant</u>
- As the pyrolysis gases do not pass a combustion zone, instead leaving with the product gas, the tar content of the product gas is high
- The gas has <u>relative high heating value</u> compared to other gasification technologies as for the high tar content in the product gas
- The gas is suitable for <u>direct combustion applications</u>, such as a small steam boiler or for ceramic industry. Using the gas in an IC-engine requires extensive gas cleaning
- The gasifier <u>construction is robust and relatively easy</u> in operation
- The gasifier can use fuel with moisture content up to 60 % (wet basis). However, the higher the moisture content, the lower the gasification efficiency. The gasifier accepts size variations in the feedstock

Gasifier types Characteristics of Downdraft Gasifiers

- The <u>heat generated</u> from combustion is used for the char reduction reactions, pyrolysis and drying
- For open-core, as the pyrolysis gases passes through a zone with very high temperature, the tars produced during pyrolysis will to a large extent crack to light compounds such as CO, CO2 and CH4
- As air is introduced with the biomass in the top, it is going to be present in the pyrolysis step, and thus <u>flaming pyrolysis</u> will take place, (i.e. simultaneously combustion of pyrolysis gases around the particle)
- The closed constricted gasifier concentrates the heat in the constriction, and gives thus <u>very low tar</u> <u>content</u> in the gas
- The large advantage with the open-core design is that it is more <u>fuel flexible</u> (size and shape) than the closed constricted type

Gasifier types Fluidized bed Gasifiers

• A gas stream passes vertically upward through a bed of inert particulate material (sand) to form a turbulent mixture of gas and solid. Fuel is added at such a rate that it is only a few percent by weight of the bed inventory.

• No segregated regions of combustion, pyrolysis, and tar cracking exist. The violent stirring action makes the bed uniform in temperature and composition with the result that gasification occurs simultaneously at all locations in the bed

Gasifier types Characteristics of Fluidized bed Gasifiers

- The fuel content is 2-3% of the bed material, the rest is inert particles
- Compared to fixed bed gasifiers, the <u>gasification temperature is relatively low</u>; an even temperature is selected in the range of 750°C to 900°C
- Compared to fixed bed gasifiers, the <u>heating</u> of the fuel during pyrolysis is <u>faster</u> and therefore the reactivity of the char is high
- Due to the <u>intense mixing</u>, the different reactions phases (drying, pyrolysis, oxidation, and reduction) can not be distinguished in <u>separate zones</u>
- Contrary to fixed bed gasifiers, the <u>oxidizer-biomass ratio</u> can be changed, and as a result the bed temperature can be controlled
- The product gas from a fluidized bed has a <u>higher tar content</u> compared to the downdraft as for the relative low operation temperature
- Low grade coals, wood chips, RDF (refuse derived fuel) and other fuel pellets are suitable
- An important application of fluidized beds are for use in <u>larger scale power plants</u> (steam plants *or* combined gas turbine and steam plants) or for synthesis gas production

Gasifier types Entrained flow Gasifiers

- Entrained flow reactors employ finely pulverized biomass and oxygen-steam as oxidizing agent in cocurrent flow
- High temperatures are achieved 1200 1500 °C
- The flow is extremely turbulent and the residence time is short
- Commonly used for coal because finer particle sizes and higher temperatures can be achieved
- Tar and methane are not present in the product gas. High content of $\rm H_2$
- Ash is removed as slag because the operating temperature is well above ash fusion temperature
- More practical for low grade coal and high coal throughput
- Application: synthesis gas for methanol production or power generation (IGCC)

Characteristics and features

Parameter	Downdraft	Updraft	CFB
Fuel -moisture content (%) -ash content (%, daf) -size (mm)	< 25 <6 20-100	< 60 <25 5-100	< 25 <25 <20
$\begin{array}{rcl} \text{Gas} \\ & & \text{temperature (°C)} \\ & & \text{LHV } (\text{kJ/m}_n{}^3) \\ & & \text{tar content } (\text{g/m}_n{}^3) \\ & & \text{particulates} & (\text{g/m}_n{}^3) \\ & & \text{particulates} & (\text{g/m}_n{}^3) \\ & & \text{composition} & (\% \\ & & \text{v/v.)} \\ & & \text{H}_2 \\ & & \text{CO} \\ & & \text{CO}_2 \\ & & \text{CH}_4 \end{array}$	800 4-6 0,01-6 0,1-8 15-21 10-22 11-13 1-5	200-400 4-6 10-150 0,1-3 10-14 15-20 8-10 2-3	850 5-6,5 2-30 8-100 15-22 13-15 13-15 2-4
Max commercial capacity (forecast) (MW _{th})	1	10	100
Scale-up ability	poor	good	v. good

Characteristics and features

PARAMETERS		FIXED BED		FLUID BED				
	Up-draft	Down-draft	Cross flow	Bubbling	Circulating			
Reaction temperature [C]	1000	1000	900	850	850			
Gas temperature [C]	250	800	900	800	850			
Throughput [t/h]	10	0.5	1	10	50			
Electric power [MWe]	1 - 10	0.1 - 5	0.1 - 2	1 - 20	2 - 100			
	GAS CHARACTERISTIC							
Tars content	v. high	v. low	v. high	medium	low			
Particulates	av. high	medium	high	v. high	v. high			
	FEEDSTOCK REQUIRAMENTS							
Mixing intensity	low	low	low	good	v. good			
Limits for particle size	some	some	some	specific	specific			
Moisture content	any	limited	limited	limited	limited			
Fuel flexibility	no effect	low effect	low effect	strong	strong			
	DEVELOPMENT POTENTIAL							
Scaling up	limited	low	low	good	v. good			
Process control	medium	medium	low	v. good	v. good			
	EFFECTIVITY							
Conversion efficiency	v. good	v. good	low	good	v. good			
Thermal efficiency	v. good	v. good	good	good	v. good			

Gasifier thermal power range

Gasifier types Advantages and disadvantages

Gasifier	Advantages	Disadvantages
Updraft fixed bed	Mature for small-scale heat application Can handle high moisture No carbon in ash	Feed size limits High tar yields Scale limitations Low heating value Slagging potential
Downdraft fixed bed	Small-scale applications Low particulates Low tar	Feed size limits Scale limitations Low heating value Moisture sensitivity
Bubbling fluidized bed	Large-scale applications Feed characteristics Direct/indirect heating Gas with higher heating value	Medium tar yield Higher particle loading
Circulating fluidized bed	Large-scale applications Feed characteristics Gas with higher heating value	Medium tar yield Higher particle loading
Entrained flow fluidized bed	Can be scaled Potential for low tar Potential for low methane Gas with higher heating value	Large amount of carrier gas Higher particle loading Particle size limits

Gasification Performance

Typical producer gas composition and heating value of some agricultural feedstock

Biomass fuel	Gasification		Composit	Heating Value			
	method	CO	\mathbf{H}_{2}	CH ₄	CO ₂	N ₂	(MJ/m ³)
Charcoal	Downdraft	28 - 31	5 - 10	1 - 2	1 - 2	55 - 60	4.60-5.65
Charcoal	Updraft	30	19.7		3.6	46	5.98
Wood (10-20%	Downdraft	17 - 22	16 - 20	2 - 3	10 - 15	55 - 60	5.00 - 5.86
MC)		AND PARA		AL PROPERTY.			
Wheat straw	Downdraft	14 - 17	17 - 19		11 - 14	2011 <u>-</u> 1011-3	4.50
pellets		1	H.	4	t.	1. A. 1.	
Coconut husks	Downdraft	16 - 20	17 - 19.5		10 - 15		5.80
Coconut shells	Downdraft	19 - 24	10 - 15		11 - 15		7.20
Pressed	Downdraft	15 - 18	15 - 18	100	12 - 14	(1) - (1) -	5.30
sugarcane		AND THE ST				い時にいた	
Corn cobs	Downdraft	18.6	16.5	6.4		17 <u>1</u> 1. 11. 1	6.29
Paddy husks	Downdraft	16.1	9.6	0.95		200,24,00	3.25
pellets							
Cotton stalks	Downdraft	15.7	11.7	3.4	R. Cart	7	4.32
cubed		ANT STREET		Stat St	14 24 14	Stat Stat	

Gasification Performance

Producer gas applications and quality requirement

Product	Synthetic Fuels	Methanol	Hydrogen	Fue	l Gas
	FT Gasoline & Diesel			Boiler	Turbine
H ₂ /CO	0.6 ^a	~2.0	High	Unimportant	Unimportant
CO ₂	Low	Low ^c	Not Important ^b	Not Critical	Not Critical
Hydrocarbons	Low ^d	Low ^d	Low ^d	High	High
N ₂	Low	Low	Low	Note ^e	Note ^e
H ₂ O	Low	Low	High ^f	Low	Note ^g
Contominante	<1 ppm Sulfur	<1 ppm Sulfur	<1 ppm Sulfur		Low Part.
Contaminants	Low Particulates	Low Particulates	Low Particulates	Note ^k	Low Metals
Heating Value	Unimportant ^h	Unimportant ^h	Unimportant ^h	High ¹	High ¹
Duocenno hon		${\sim}50$ (liquid phase)			
Fressure, Dar	~20-30	${\sim}140$ (vapor phase)	~28	Low	~400
	200-300 ^j				
Temperature, °C	300-400	100-200	100-200	250	500-600

Gasification Performance

Gasifier Efficiency

- Performance of a gasifier is often expressed in terms of its efficiency, which can be defined in two different ways: <u>cold gas</u> <u>efficiency</u> and <u>hot gas efficiency</u>.
- The cold gas efficiency is used if the gas is used for running an internal combustion engine in which case it is cooled down to ambient temperature and tar vapors are removed from the gas.
- For thermal applications, the gas is not cooled before combustion and the sensible heat of the gas is also useful

$$\eta_{ceff} = (V_g C_g) / (M_b C_b)$$

 V_g = gas flue generation rate (m³/s) C_g = heating value of the gas (kJ/m³) M_b = biomass consumption rate (kg/s) C_b = calorific value of biomass (kJ/m³) Typical value: 70 %

$$\eta_{heff} = (V_g C_g + H_{sensible})/(M_b C_b)$$

$$H_{\text{sensible}} = C_p V_g (t_g - t_a)$$

 $t_g = \text{gas temperature}$
 $t_a = \text{ambient temperature}$
Typical value: 75 %

Practical gasification systems

The two-burner rice husk gas stove - Philippines
Institutional Cookstove

Industrial gasifier (2 MWth)

Small scale electricity generation

3.5 kWe fuel wood gasifier - IC engine system in Sri Lanka

> Introduction 1. Energy Context 2. Biomass as Renewable Energy Resources **3.** Bioenergy **Biomass characteristics 1.** Biomass composition 2. Thermo-physical properties **Biomass Thermal Conversion 1.** Principals 2. Gasification technology 3. Pyrolysis technology

Principal of Pyrolysis

• Pyrolysis is a thermal decomposition by heat in the absence of oxygen

Dry Biomass \rightarrow char + (CO, CO₂, H₂, H₂O (g), CH₄) + tars + Ash

- During pyrolysis biomass undergoes a sequence of changes and normally yields a mixture of gases (<u>Pyrolysis gas</u>), liquids (<u>Bio-oil</u>) and solid (<u>Charcoal</u>)
- The main purpose of pyrolysis is to produce <u>bio-oils</u> and <u>biochar</u>
- Generally low temperatures and slow heating rates results in high yield of charcoal. This type of pyrolysis is called <u>carbonization</u>
- <u>Liquefaction</u> can also be confused with pyrolysis.
- The two processes differ in operating parameters, requirement of catalyst, and final products.
- Liquefaction produces mainly liquid (Fast pyrolysis)

Pyrolysis Technology Variant

Percentage composition of liquid, solid and gaseous products of different pyrolysis modes

Pyrolysis Technology Variant

Pyrolysis processes classified based on heating rates and residence time

Process	Residence	Heating	Temp	Products
	Time	Rate	(°C)	
Carbonization	Days	Very low	400	Charcoal
Conventional	5 – 30 min	Low	600	Oil, Gas, Char
Fast	0.5 - 5 sec	5-5 sec Very high		Bio-oil
Flash-liquid	< 1 sec	High	<650	Bio-oil
Flash-gas	< 1 sec	High	<650	Chemicals, Gas
Ultra	< 0.5 sec	Very high	1000	Chemicals, Gas
Vacuum	2-30 sec	Medium	400	Bio-oil
Hydro-pyrolysis	< 10 sec	High	<500	Bio-oil
Methano- pyrolysis	< 10 sec	High	>700	Chemicals

Basic processes of Pyrolysis plant

System Configuration

- A pyrolysis system unit typically consists of the equipment for biomass preprocessing, the pyrolysis reactor, and equipment for downstream processing.
- Can be classified as units that produce heat and biochar (using slow pyrolysis) or units that produce biochar and bio-oils (using fast pyrolysis),

Pyrolysis products / end-use

Typical Bio-oil vs Heavy Fuel

Physical property	Pyrolysis Bio-oil	Heavy Fuel Oil
Water, wt%	15-30	0.1
Specific Gravity	1.2	0.94
Heating Value (MJ/kg)	13-19	40
Solids, wt%	0.2-0.1	0.2-1.0
Viscosity, (at 50°C) (cP)	40-100	180
pH	2.5	
Oxygen, wt%	35-60	0.6-1.0

Types of Pyrolysis Reactor Designs

- A number of different pyrolysis reactor designs are available.
- These include Fluidized bed, Re-circulating fluidized bed, Ablative, Rotating cone, Auger (or screw), Vacuum, Transported bed, and Entrained flow.

Types of Pyrolysis Reactor Designs

- As pyrolysis is a precursor to gasification and combustion, the same reactors used for gasification can be used for pyrolysis.
- Bubbling fluidized bed reactors are simpler to design and construct than other reactor designs, and have good gas to solids contact, good heat transfer, good temperature control, and a large heat storage capacity.
- Circulating fluidized bed pyrolysis reactors are similar to bubbling fluidized bed reactors but have shorter residence times for chars and vapors which results in higher gas velocities, faster vapor and char escape, and higher char content in the bio-oil.
- They have higher processing capacity, better gas-solid contact, and improved ability to handle solids that are difficult to fluidize.

Types of Pyrolysis Reactor Designs

Reactor	Status	Mode of heat	Max. Yield	Typical features
type		transfer	Wt %	
Fluidized	Commercial	90%	75	High heat transfer rates; Heat supply to fluidizing gas or to
bed		conduction;	Sec. A.	bed directly; Limited char abrasion; Very good solids mixing;
all Miss.		9%		Simple reactor configuration; Particle size limit < 2 mm in
		convection;	and and the second	smallest dimension
		1% radiation		
Circulating	Commercial	80%	75	High heat transfer rates; High char abrasion from biomass and
fluidized		conduction;		char erosion; Leading to high char in product; Char/solid heat
bed		19%		carrier separation required; Solids recycle required; Increased
and the Marian		convection;	and in the second	complexity of system; Maximum particle sizes up to 6 mm;
The second	and the second	1% radiation	all so the	Possible liquids cracking by hot solids; Possible catalytic
				activity from hot char; Greater reactor wear possible
22-62-62				
Rotating	Pilot	95%	70	Low feedstock size; Flexible feedstocks; Compact design;
cone		conduction;	1. 1. 1. 1. 1. 1. 1.	Heat supply problematical; Heat transfer gas not required;
		4%		Particulate transport gas not always required, Low particle
and the second	and the second	convection;	AND AND AND HE	content in bio-oil
		1% radiation		